Solubility of Mixtures of Hydrogen Sulfide and Carbon Dioxide in Aqueous Solutions of Triethanolamine

Fang-Yuan Jou, Frederick D. Otto, and Alan E. Mather*

Department of Chemical Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada

The solubility of mixtures of hydrogen sulfide and carbon dioxide in three triethanolamine solutions, (2.0, 3.5, and 5.0) mol dm⁻³, has been determined at temperatures of 50 °C, 75 °C, and 100 °C at partial pressures up to 5490 kPa.

Aqueous alkanolamine solutions are commonly used for the removal of H₂S and CO₂ from natural gas streams. Triethanolamine (TEA) solutions were initially used, but they were superseded by monoethanolamine and diethanolamine solutions which have a higher rate of reaction with the acid gases (Gregory and Scharmann, 1937). Van den Berg (1962) investigated the use of TEA solutions for the removal of CO_2 from apple storage chambers. The use of triethanolamine solutions in a dual solvent process has been proposed by Strelzoff (1970). The gas stream is contacted with a triethanolamine solution to remove the bulk of the carbon dioxide. By reduction of the pressure, about half of the absorbed carbon dioxide is liberated from the solution without the need for heating. The partially purified gas from the TEA absorber is sent to a second stage absorber where the carbon dioxide content is reduced to less than 0.05% using a solution of monoethanolamine. Recently, interest has been shown in the use of TEA for bulk removal of CO2 and in the selective removal of H₂S. Goddin (1982) has shown that TEA bulk removal combined with membrane permeation resulted in the lowest cost removal of CO2 from gases used for enhanced oil recovery. Sotelo et al. (1990) have measured the kinetics of the absorption of CO2 by TEA solutions, and Linek et al. (1990) have simulated the design and operation of an industrial absorber using TEA. Solubility data for H₂S and CO₂ individually in TEA solutions were obtained in this laboratory (Jou et al., 1985). The present work was undertaken to provide information on the effect of mixtures of the acid gases on their solubility in triethanolamine solutions.

Experimental Section

Amine solutions were prepared from distilled water and triethanolamine having a purity of 99.4% obtained from Fisher Scientific. Hydrogen sulfide and carbon dioxide were obtained from Matheson and Linde, respectively, and had purities greater than 99%. The equipment used to determine the solubility data was that previously used in our laboratory (Jou et al., 1985). The apparatus consisted of a Jerguson liquid level gauge with a 50 cm³ tubular gas reservoir mounted on the top. A magnetically driven piston pump was used to circulate the gas phase and bubble it through the liquid solution. The total volume of the apparatus including the cell, gas reservoir, tubing, and the pump is 250 cm³. The apparatus was mounted in an air

Figure 1. Effect of CO_2 on the solubility of H_2S in 3.5 mol dm⁻³ TEA solution at 100 °C: (\bullet), H_2S ; (\bigcirc) $H_2S + CO_2$.

bath of dimensions 0.61 \times 0.91 \times 1.22 m. The air bath was equipped with a 3000 W heater and a refrigeration unit and fan; it can be controlled to within ± 0.5 °C. The temperature inside the cell was measured with an ironconstantan thermocouple with an accuracy of ± 0.1 °C. The pressure in the cell was measured with two calibrated digital Heise gauges (0-10 MPa and 0-35 MPa). The Heise gauges have an accuracy of 0.1% of full scale according to a calibration against a dead-weight gauge. The TEA solution of the desired concentration was charged to the evacuated cell, and acid gases were then added in an amount determined by observation of the pressure. The vapor phase was analyzed with the gas chromatograph using a 3.65 m long, 6.35 mm o.d. column packed with Chromosorb 104, operated isothermally at 100 °C. To ensure that equilibrium was reached, the vapor was bubbled through the liquid for at least 8 h prior to sampling of the liquid phase. The liquid sample from the cell was passed into a 1.0 mol dm⁻³ NaOH solution to form involatile salts. The concentration of CO₂ in an aliquot of the liquid sample was determined by mixing the liquid with 0.1 mol dm⁻³ BaCl₂ solution to form a precipitate of BaCO₃. This precipitate was filtered off and washed. The BaCO₃ was titrated with 0.1 mol dm⁻³ HCl using methyl orangexylene cyanol indicator. The concentration of H₂S in an aliquot of liquid sample was determined by mixing the

 $^{^{\}ast}$ To whom correspondence should be addressed. E-mail: alan. mather@ualberta.ca.

. .

Table 1. Solubility of H_2S+CO_2 Mixtures in 2.0 mol dm^{-3} TEA Solution

Table 2. Solubility of H_2S+CO_2 Mixtures in 3.5 mol dm^{-3} TEA Solution

. . . .

. .

_	nantial processor		mole ratio in liquid			partial processor		mole ratio in liquid	
total pressure		aressures			total pressure		/ D		
<i>Р</i> /кРа	<i>p</i> _{H₂S} /kPa	<i>р</i> _{СО2} /кРа	H_2S/IEA	CO ₂ /TEA	Р/кРа	<i>p</i> _{H₂S/кРа}	<i>p</i> _{CO2} /кРа	H_2S/IEA	CO ₂ /TEA
		50 °C					50 °C		
1750	1050.0	447.0	1.017	0.239	3050	325.0	2710.0	0.179	0.985
728	465.0	180.0	0.765	0.196	935	108.0	816.0	0.141	0.714
596	32.7	232.0	0.109	0.609	533	104.0	34.2	0.375	0.0737
1840	25.9	1800.0	0.0263	1.079	510	98.6	3.08	0.392	0.00654
3630	15.7	3600.0	0.0115	1.332	2960	32.2	2910.0	0.0208	1.038
200	4.74	72.8	0.0336	0.321	452	17.4	93.7	0.0844	0.258
200	1.47	5.21	0.0373	0.0703	517	11.1	130.0	0.0483	0.330
5670	1.07	5650.0	0.00119	1.378	569	10.3	548.0	0.0206	0.683
200	0.678	0.401	0.0388	0.0117	510	9.74	13.2	0.0906	0.0751
424	0.530	1.42	0.0242	0.0317	531	8.22	36.0	0.0627	0.164
478	11.4	3.97	0.159	0.0343	2750	2.71	2730.0	0.00288	1.1156
478	63.7	4.55	0.404	0.0202	495	0.400	0.381	0.0167	0.00716
501	75.8	38.5	0.391	0.149			75 °C		
488	296.0	55.5	0.733	0.0974	513	10.2	1.50	0.0584	0.00299
502	82.7	86.4	0.343	0.272	479	9.97	17.0	0.0471	0.0271
		75 °C			493	11.0	160.0	0.0302	0.160
3680	1610.0	2020.0	0.810	0.454	717	7.40	677.0	0.0128	0.392
860	547.0	273.0	0.658	0.132	2970	12.5	2920.0	0.00911	0.745
600	535.0	26.5	0.727	0.0163	513	120.0	9.98	0.240	0.00679
1500	274.0	1180.0	0.269	0.512	572	101.0	77.7	0.207	0.0666
519	93.2	94.0	0.254	0.116	384	100.0	238.0	0.169	0.156
453	47.2	113.0	0.152	0.154	936	104.0	798.0	0.122	0.380
562	38.6	37.9	0.167	0.0806	2860	77.8	2747.0	0.0519	0.713
506	23.2	102.0	0.0913	0.181	589	330.0	221.0	0.420	0.123
485	18.0	44.6	0.0943	0.0959	2030	1630.0	165.0	0.955	0.0446
495	13.1	9.31	0.0963	0.0315	1510	681.0	784.0	0.513	0.255
537	32.2	103.0	0.121	0.157	451	5.10	20.8	0.0277	0.0362
464	23.1	2.38	0.141	0.00909	541	2.97	0.879	0.0282	0.0024
3610	17.8	3550	0.013	1.038			100 °C		
729	13.8	269.0	0.0416	0.357	1120	005.0	100 C	0 520	0.0061
524	13.0	457.0	0.0261	0.450	1990	993.0	49.0	0.329	0.0001
5790	5.97	5740.0	0.00438	1.170	520	993.0	7 96	0.494	0.130
542	4.40	9.46	0.0477	0.0402	1080	1410.0	7.30 483.0	0.133	0.00303
465	0.0283	0.287	0.00206	0.0060	2050	1060.0	1800.0	0.052	0.0334
		100 °C			514	9 76	6 79	0.435	0.00526
4000	1330.0	2560.0	0.648	0.526	483	10.5	45.4	0.0258	0.00020
6090	1210.0	4770.0	0.466	0.714	676	11.0	187.0	0.0193	0.0964
1730	1040.0	569.0	0.703	0.175	476	9 1 5	382.0	0.0130	0.152
2820	550.0	2170.0	0.343	0.553	1700	8.83	1600	0.00808	0.341
686	175.0	418.0	0.225	0.215	1850	1700	63.0	0.724	0.00690
532	114.0	5.88	0.221	0.00267	3310	63.8	3160	0.0359	0.517
612	75.2	188.0	0.134	0.0869	138	1.13	3.30	0.0078	0.00495
480	65.1	13.0	0.155	0.00826	573	100	67.8	0.129	0.0241
449	38.8	3.04	0.113	0.00255	600	105	410	0.105	0.115
558	9.43	22.3	0.0447	0.0285	479	116	48.9	0.140	0.0164
508	2.67	1.85	0.0249	0.00434	2140	100	1960	0.065	0.386
592	0.623	2.10	0.0102	0.00766	1470	98.9	1290	0.073	0.278
508	0.224	0.637	0.00523	0.00413	4460	78.1	4300	0.0358	0.605
507	60.8	354.0	0.105	0.214	5680	97.8	5490	0.0414	0.639
1110	14.2	935.0	0.020	0.386	5670	103	5480	0.0422	0.666
473	7.44	82.2	0.0252	0.0949	4390	8.62	4290	0.00451	0.598
521	6.25	40.4	0.0282	0.0650	2550	1520	939	0.634	0.127
					1820	1020	716	0.495	0.108
liquid with an	overes of as	idia 0 1 ma	dm=3 indir	o colution	5730	907	4730	0.298	0.458
inquite writh an excess of actuic 0.1 mol dim * logine solution.					4200	992	3120	0.371	0.350
The excess iodine was back-titrated with $0.1 \text{ mol } \text{dm}^{-3}$					5290	4260	945	0.0767	0.222
Na ₂ S ₂ O ₃ solut	ion using s	tarch indic	ator. The	concentra-	6180	3830	2270	0.192	0.995
tion of TEA in	the solution	n was dete	rmined by t	titration of	2850	1790	976	0.705	0.108
an aliquot of	liquid sam	nle with	10 mol dn	n^{-3} H _o SO.	2320	1270	964	0.577	0.149
colution wet-	myunu sall	d indicator	Donlingt	112504	558	1.74	109	0.0410	0.0665
solution using methyl red indicator. Replicate measure-					521	18.7	92.1	0.397	0.0518
ments indicated that the uncertainty in the solubility is					528	171	114	0.164	0.0323

1190

1020

Results and Discussion

less than 5%.

The solubility of mixtures of hydrogen sulfide and carbon dioxide in (2.0, 3.5, and 5.0) mol dm⁻³ triethanolamine solutions has been measured at (50, 75, and 100) °C at partial pressures of the acid gases up to 5490 kPa. The results are presented in Tables 1-3.

In mixtures of H_2S and CO_2 , the acid gases compete for the available base in the solution. Hence the solubility of one acid gas is decreased by the presence of the other acid gas. The effect can be seen in Table 4 in which selected values from Table 2 at partial pressures of H_2S near 10 and 100 kPa show clearly the decrease in solubility of H_2S with increasing concentration of CO_2 in the liquid phase.

105

0.534

0.0155

Table 3. Solubility of H₂S + CO₂ Mixtures in 5.0 mol dm⁻³ TEA Solution

total pressure	partial p	pressures	mole ratio in liquid (Mol/Mol)		
<i>P</i> /kPa	$p_{\rm H_2S}/\rm kPa$	$p_{\rm CO_2}/{\rm kPa}$	H ₂ S/TEA	CO ₂ /TEA	
		50 °C			
506	10.0	14.3	0.0440	0.0325	
541	10.3	75.6	0.0389	0.128	
2320	10.2	2290.0	0.0088	0.804	
512	99.2	36.2	0.274	0.0501	
594	101.0	158.0	0.228	0.170	
600	99.8	492.0	0.159	0.341	
2630	98.6	2520.0	0.0674	0.804	
		75 °C			
403	0.379	0.134	0.00523	0.000445	
437	5.01	1.02	0.0208	0.00103	
444	7.02	32.2	0.0199	0.0240	
548	2.64	7.44	0.0123	0.00838	
550	4.81	89.4	0.0122	0.0549	
680	6.37	237	0.0115	0.101	
687	7.05	614	0.0085	0.181	
950	235.0	652	0.189	0.177	
2170	254.0	1870	0.151	0.357	
782	119.0	633	0.113	0.157	
577	73.6	284	0.0933	0.119	
515	3.59	29.4	0.0133	0.0262	
496	10.1	29.4	0.0277	0.0223	
501	10.3	109.0	0.0215	0.0608	
534	7.52	493.0	0.010	0.184	
2100	9.14	2060.0	0.00809	0.464	
2210	103.0	2080.0	0.0674	0.422	
641	101.0	20.2	0.152	0.00938	
536	92.9	257.0	0.113	0.0995	
		100 °C			
530	12.7	3.25	0.0217	0.00111	
512	127.0	31.0	0.0861	0.00546	
496	8.08	5.51	0.0143	0.00209	
455	21.3	21.6	0.0271	0.00558	
485	73.5	13.1	0.0651	0.00286	
377	218	82.0	0.133	0.0122	
794	384	263	0.226	0.0387	
2040	618	692	0.259	0.0772	
1080	13.9	575	0.00738	0.0785	
516	11.7	110	0.0133	0.0255	
674	7.83	83.9	0.0110	0.0260	
674	5.49	10.0	0.0118	0.00404	

Here the liquid concentrations are given as α_{H_2S} and α_{CO_2} , moles of acid gas/moles of TEA. The abridged results are Table 4. Effect of CO₂ on the Solubility of H₂S in 3.5 mol dm⁻³ TEA Solution at 100 $^{\circ}$ C

	$\alpha_{H_2S}/(mol of H_2S/$	α_{CO_2} /(mol of CO ₂ /
nu c/kPa	mol of TEA)	mol of TEA)
$p_{\rm H_2}$ S/KI a	mor or TLA)	IIIOI OI I LA)
9.76	0.0308	0.00526
10.5	0.0258	0.0297
11.0	0.0193	0.0964
9.15	0.0130	0.152
8.83	0.00808	0.341
99.7	0.135	0.00303
100	0.129	0.0241
105	0.105	0.115
98.9	0.073	0.278
100	0.065	0.386
97.8	0.0414	0.639
103	0.0422	0.666
78.1	0.0358	0.605
63.8	0.0359	0.517

presented in Figure 1, where the points labeled H₂S only were taken from Jou et al. (1985). The effect is similar at other concentrations and temperatures.

Literature Cited

- Goddin, C. S. Pick treatment for high CO₂ removal. *Hydrocarbon* Processing **1982**, 61 (5), 125–130.
 Gregory, L. B.; Scharmann, W. G. Carbon Dioxide Scrubbing by Amine
- Solutions. Ind. Eng. Chem. 1937, 29, 514–519.
 Jou, F.-Y.; Otto, F. D.; Mather, A. E. Equilibria of H₂S and CO₂ in Triethanolamine Solutions. Can. J. Chem. Eng. 1985, 63, 122–125.
 Linek, V.; Sinkule, J.; Richter, M.; Pospišil, J. Verification of the Design Mathede for Inductrial Carbon Diavide Triatbanelomine Absorb
- Methods for Industrial Carbon Dioxide-Triethanolamine Absorbers: Laboratory Differential Simulation and Computational Methods. *Ind. Eng. Chem. Res.* **1990**, *29*, 1676–1681. Sotelo, J. L.; Benitez, F. J.; Beltran-Heredia, J.; Rodriguez, C. Absorp-
- tion of Carbon Dioxide into Aqueous Solutions of Triethanolamine. AIChE J. 1990, 36, 1263-1266.
- Strelzoff, S. Removal and recovery of carbon dioxide from gas mixtures by means of ethanolamines. *Chem. Ind.-Gen. Chim.* **1970**, *103*, 185-198 (in French).
- Van den Berg, L. Carbon Dioxide Absorption and Desorption in a Packed Tower Using Water and Solutions of Sodium Carbonate and of Triethanolamine. Can. J. Chem. Eng. 1962, 40, 250-253.

Received for review April 25, 1996. Accepted June 19, 1996.[⊗] The authors are grateful for the financial support of this work provided by the Amoco Production Co., Tulsa, OK.

JE960150I

[®] Abstract published in Advance ACS Abstracts, August 1, 1996.